1,447 research outputs found

    The Atomic and Electronic Structure of Liquid N- Methylformamide as Determined from Diffraction Experiments

    Full text link
    The structure of liquid N-methylformamide (NMF) has been investigated using synchrotron radiation at 77 and 95 keV. The use of high energy photons has several advantages, in this case especially the large accessible momentum transfer range, the low absorption and the direct comparability with neutron diffraction. The range of momentum transfer covered is 0.6 \AA−1<^{-1} < Q <<24.0 \AA−1^{-1}. Neutron diffraction data on the same sample in the same momentum transfer range have been published previously. In that study two differently isotope - substituted species were investigated. In order to compare neutron and photon diffraction data properly Reverse Monte Carlo (RMC-) simulations have been performed. Some modifications had to be added to the standard RMC- code introducing different constraints for inter- and intramolecular distances as these distances partly overlap in liquid NMF. RMC- simulations having only the neutron data as input were carried out in order to test the quality of the X-ray data. The photon structure factor calculated from the RMC- configurations is found to agree well with the present experimental data, while it deviates considerably from earlier X-ray work using low energy photons (17 keV). Finally we discuss whether the different interaction mechanisms of neutrons and photons can be used to directly access the electronic structure in the liquid. Evidence is presented that the elastic self scattering part of liquid NMF is changed with respect to the independent atom approximation. This modification can be accounted for by a simple charged atoms model.Comment: Accepted for publication in Molecular Physics, LaTex file, 12 pages, figures not include

    Design study of Software-Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view

    Numerical Bifurcation Analysis of Conformal Formulations of the Einstein Constraints

    Full text link
    The Einstein constraint equations have been the subject of study for more than fifty years. The introduction of the conformal method in the 1970's as a parameterization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental non-uniqueness problems with the conformal method as a parameterization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods.Comment: 13 pages, 4 figures. Final revision for publication, added material on physical implication

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    Persistent clinical efficacy and safety of anti-tumour necrosis factor \textgreeka therapy with infliximab in patients with ankylosing spondylitis over 5 years: evidence for different types of response

    Get PDF
    Background: There is insufficient evidence for the long-term efficacy and safety of anti-tumour necrosis factor therapy in patients with ankylosing spondylitis (AS). This is the first report on the treatment with infliximab over 5 years.Methods: As part of a multicentre randomised trial, 69 patients with active AS at baseline (BL) have been continuously treated with infliximab (5 mg/kg i.v. every 6 weeks)---except for a short discontinuation after 3 years (FU1). The primary outcome of this extension was remission according to the ASsessment in Ankylosing Spondylitis (ASAS) criteria at the end of year 5 of the study (FU2).Results: Of the 43 patients who completed year 3, 42 agreed to continue, 38 of which (90.5%) finished year 5 (55% of 69 initially). Partial clinical remission was achieved in 13 of 38 patients (34.2%) at FU1 and FU2. At FU2, the mean Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) was 2.5±1.9 (BL:6.4, FU1:2.5). BASDAI values <4 were seen in 79% of patients at both, FU1 and FU2. ASAS 20% and 40% responses were seen in 32 (84%) and 24 (63%) patients at FU2, respectively. Most patients classified as non-responders at FU2 were part-time responders, as all but one patient achieved an ASAS 20% response at least once within the last 2 years. Three types of responders were identified. No major side effects occurred during years 4 and 5 of infliximab therapy.Conclusions: Infliximab is safe and efficacious in AS patients over 5 years. The majority of the patients remained on treatment and had rather persistent levels of low disease activity. Different response types could be identified

    A theory of intense-field dynamic alignment and high harmonic generation from coherently rotating molecules and interpretation of intense-field ultrafast pump-probe experiments

    Full text link
    A theory of ultra-fast pump-probe experiments proposed by us earlier [F.H.M. Faisal et al., Phys. Rev. Lett. 98, 143001 (2007) and F.H.M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008)] is developed here fully and applied to investigate the phenomena of dynamic alignment and high harmonic generation (HHG) from coherently rotating linear molecules. The theory provides essentially analytical results for the signals that allow us to investigate the simultaneous dependence of the HHG signals on the two externally available control parameters, namely, the relative angle between the polarizations, and the delay-time between the two pulses. It is applied to investigate the characteristics of high harmonic emission from nitrogen and oxygen molecules that have been observed experimentally in a number of laboratories. The results obtained both in the time-domain and in the frequency-domain are compared with the observed characteristics as well as directly with the data and are found to agree remarkably well. In addition we have predicted the existence of a "magic" polarization angle at which all modulations of the harmonic emission from nitrogen molecule changes to a steady emission at the harmonic frequency. Among other things we have also shown a correlation between the existence of the "magic" or critical polarization angles and the symmetry of the active molecular orbitals, that is deemed to be useful in connection with the "inverse problem" of molecular imaging from the HHG data.Comment: 31 pages, 22 figures, and 140 equation

    The structure of fluid trifluoromethane and methylfluoride

    Full text link
    We present hard X-ray and neutron diffraction measurements on the polar fluorocarbons HCF3 and H3CF under supercritical conditions and for a range of molecular densities spanning about a factor of ten. The Levesque-Weiss-Reatto inversion scheme has been used to deduce the site-site potentials underlying the measured partial pair distribution functions. The orientational correlations between adjacent fluorocarbon molecules -- which are characterized by quite large dipole moments but no tendency to form hydrogen bonds -- are small compared to a highly polar system like fluid hydrogen chloride. In fact, the orientational correlations in HCF3 and H3CF are found to be nearly as small as those of fluid CF4, a fluorocarbon with no dipole moment.Comment: 11 pages, 9 figure

    The psychological foundations of reputation-based cooperation

    Get PDF
    Humans care about having a positive reputation, which may prompt them to help in scenarios where the return benefits are not obvious. Various game-theoretical models support the hypothesis that concern for reputation may stabilize cooperation beyond kin, pairs or small groups. However, such models are not explicit about the underlying psychological mechanisms that support reputation-based cooperation. These models therefore cannot account for the apparent rarity of reputation-based cooperation in other species. Here, we identify the cognitive mechanisms that may support reputation-based cooperation in the absence of language. We argue that a large working memory enhances the ability to delay gratification, to understand others' mental states (which allows for perspective-taking and attribution of intentions) and to create and follow norms, which are key building blocks for increasingly complex reputation-based cooperation. We review the existing evidence for the appearance of these processes during human ontogeny as well as their presence in non-human apes and other vertebrates. Based on this review, we predict that most non-human species are cognitively constrained to show only simple forms of reputation-based cooperation. This article is part of the theme issue ‘The language of cooperation: reputation and honest signalling’
    • …
    corecore